Business Intelligence Blog from arcplan

Predictive Analytics: Examples, Advice and Shortcuts


Everyone is throwing around the term “analytics” – about as much as they’re throwing around the term “big data.” While I might put big data on my list of the Most Overused Phrases, analytics gets a pass. As companies realize the amount of insight and value they can glean from their ever growing volumes of data, there has been a surge in analytics initiatives. The goal of these projects is to use data to analyze trends, the effects of decisions, and the impact of scenarios to make improvements that will positively impact the company’s bottom line, improve processes, and help the business plan for the future.

In order for analytics to remain relevant and always provide value, organizations must continually up their game. One way to do this is with predictive analytics, which is becoming more mainstream every day. If you stick around to the end of the article, I’ll tell you a simple way to bypass its complexity and still get the predictions you need.

Gettin’ Predictive With It
Ventana-predictivePredictive analytics involves making predictions about the future or setting potential courses of action by analyzing past data. A 2012 benchmark study by Ventana Research revealed that predictive analytics is currently used to address a variety of business needs, including forecasting, marketing, customer service, product offers and even fraud detection. While predictive analytics used to be in play in only a small number of companies, two-thirds of companies participating in Ventana’s survey are using it, and among those, two-thirds are satisfied or very satisfied. These results indicate the maturity that predictive analytics has undergone over the last few years, as technology has advanced to make it less expensive and more approachable, and therefore easier for more areas of the business to make use of. At this point, it’s safe to say that most Fortune 500 companies are churning out predictive insights on a regular basis, but that doesn’t mean smaller companies without “big data” can’t do the same thing. They can supplement their internal data with external data from social media, government agencies, and other sources of public data to get the insights they need.

In Practice
Let’s take a look at finance institutions, which have predictive analytics down to a science….

Continue reading this post >>